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Abstract

Formal  modeling  and  simulation  methods  employing  agent-based  modeling  (ABM)
continue to grow in their application and study of human behavioral dynamics at a variety
of population, spatial,  and temporal  scales. Research that uses this perspective spans
over a wide range of interests, from cultural evolution to the emergence of cooperation.

This paper explores some of the problems and challenges of using ABM to study common
research  problems  involving  small-scale  societies.  Methodological  and  implementation
benefits relevant for exploring small-scale societies are discussed. We then discuss two
simple and research-oriented models created to examine key aspects of social interaction:
a) decision-making processes and b) social learning. The intent is to, therefore, provide
researchers with clear and useful examples to understand and explore ABM methodology
for their own work. 

The  models  are  made  freely  available  in  four  common  programming  languages  and
modeling platforms (R, Python, Repast Simphony, and NetLogo). This allows us not only to
explore key concepts in modelling human behavior, but also to demonstrate practical ABM
implementation in various free and open source tools.
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1 INTRODUCTION

The popularity of Agent-Based Modeling (ABM) in addressing numerous social  science
questions is understandable given the operational advantages of studying societies from a
bottom-up perspective (Gilbert 2008). Here, we use ABM to mean computer simulations
where heterogeneous entities encapsulating decision making processes interact over a
given temporal  interval.  This  basic  framework  is  used to  experiment  with  societies  of
autonomous  agents  modeling  individuals  and  organizations  that  interact  following
nonlinear dynamics. The local behavior and interactions of agents can generate emergent
system-level properties, that in turn affect individual agents, thus linking individual behavior
to  large  scale  population  patterns  (Macal  and  North  2005).  This  has  made  ABMs
increasingly popular for studying a variety of emergent social evolutionary characteristics
in small-scale societies (e.g., Read 2003, Smith and Choi 2007). Such societies are of
interest to researchers for understanding a wide range of topics that include prehistoric
transfer  of  technologies  or  how  modern  small-scale  societies  may  interact  in  an
interconnected, globalized world (Jackson 1984, Boyd and Richerson 2009, Ruiz-Mallén et
al. 2013, Henrich 2004). Overall, the application of ABMs in the study of small-societies
provides  an  avenue  to  test  and  explore  different  social  behavioral  assumptions  and
understanding affecting how such societies evolve). Typically, researchers find that lower
densities of population can affect key aspects in understanding small-scale societies, such
as cultural transmission, leading to debates in the research literature (Henrich 2004). 

There are growing efforts to standardize ABM practices (Grimm et al. 2010) in order to
make  them  more  accessible  or  easier  to  implement  (Ozik  et  al.  2013).  This  should
facilitates commonalities in methodological implementation, facilitating comparability and
evaluation of models, and expanded use of ABMs, allowing for greater knowledge transfer.
Additionally,  that  the publication  of  model  code as practical  examples  of  model-based
research can also provide useful demonstrations to potential users of how such models
are  created  and  implemented.  Implementing  the  same  conceptual  model  in  multiple
platforms, can cater to different users and make ABM more accessible to a wider research
community.  Here,  we  present  and  discuss  example  ABMs,  in  multiple  computing
languages and platforms, that address common themes for small-scale societies.

The paper begins by briefly introducing formal modeling in the context of ABM and small-
scale  societies.  To  demonstrate  how  one  can  address  challenges  of  modeling  and
understanding small-scale societies using ABM, we present several implementations of
two models that deal with cultural transmission and decision-making. These two examples
cover  a wide-range of possible case studies that  might  be of interest  for  researchers,
making  them  applicable  for  study.  The  models  are  implemented  in  the  widely  used
languages/platforms of: R (R Development Core Team 2014), Python (Python Software
Foundation 2015), Repast Simphony (North et al. 2013) and NetLogo (Wilensky 1999). All
four  languages/platforms are increasingly  used in  scientific  computing,  and have large
active development communities. These tools are also all free and open source, making
them particularly attractive for model implementation for a wide variety of researchers. We
then present results and discuss these two models with respect to research problems in
small-scale societies. We conclude by summarizing the benefits of the models presented
and the wider advantages of using this paper’s models for learning about ABM and its
implementation.



2 MODELLING SMALL SCALE SOCIETIES

By small-scale societies, we mean societies that maintain social and political autonomy at
the  level  of  one  or  few  local  communities,  thus  involving  at  most  a  few  thousand
individuals (Smith and Wishnie 2000). This small group size has a deep impact on cultural
systems.  They  are  often  based  on  self-sufficient  subsistence  strategies  (i.e.,  hunter-
gatherers,  small-scale  agropastoralism)  characterized  by  reciprocal  exchange  and  low
population growth (Bodley 2012). Beyond this, population size groups tend to fragment
without  specialized  institutions  that  characterize  much  larger  societies  (Henrich  et  al.,
2010).

The overwhelmingly greatest part of the human past was spent in small-scale societies,
making these 'natural' human social forms of particular interest for understanding most of
human biocultural  evolution (Roscoe 2009).  At a fundamental  level,  that organizational
features of our modern hypersocial societies emerged from a small-scale basis. 

As noted above, the relatively low number of interacting individuals and lack of cross-
cutting  and  hierarchical  social  institutions  make  studying  and  modeling  fundamental
human  social  processes  potentially  more  tractable  in  a  small-scale  context.  However,
empirical validation of models of social processes in small-scale societies is difficult as
they only exist today as highly integrated components of much larger social forms that
dominate  the  world,  or  as  vestigial  remnants  existing  on  the  margins  of  complex
agro/urban societies. 

There are several features of small-scale societies that have significant impacts on the
dynamics of cultural (and biological) processes, that are of interest for human biocultural
evolution but complicate the direct application to the modern world of insights gained from
the  study  of  humans  in  this  ancestral  social  context.  First,  small  populations  affect
stochastic  processes  of  cultural  transmission  in  a  several  ways.  When  societies  are
divided into small populations that are relatively isolated from each other, founder effects
become more pronounced, leading to greater homogeneity within small groups and more
heterogeneity between groups. Consequences include the potential for loss of practices
and technologies that depend on cumulative cultural knowledge within a particular group
and  reduced  rate  of  innovation  at  the  regional  level,  processes  that  have  been
demonstrated  through  computational  and  mathematical  modeling,  and  observed
empirically  (Kline  &  Boyd  2010;  Powell  et  al.  2009).  Related  to  this,  the  diversity  of
selectively  neutral  innovations that  can  be  maintained  as  a  result  of  drift  is  largely  a
function of the size of the population of potential learners and teachers. In a social world in
which  overall  population  densities  are  low  and  information  exchange  between  small
groups is limited, we might expect overall low cultural diversity and slow rates of change.

Second, many small-scale societies are characterized by much higher degrees of mobility
than is the case for highly sedentary, complex societies (our modern digitally connected
world excepted). This is certainly true for hunter-gatherers but also is the case for small-
scale agriculturalists, many of whom practice swidden cultivation, and pastoralists. The
amount  of  mobility  can vary, of  course,  from small-holder  farmers  (and  some hunter-
gatherers) who spend months or years in a single locale to residentially mobile hunter-
gatherers who regularly move their households on the order of weeks or months (Kelly
1995; Grove 2009). This movement can significantly counteract the effects of small group
size  on  cultural  and  biological  transmission  (Powell  et  al.  2009).  Such  residential
movement gives small groups the potential to greatly expand the pool of potential learners
and teachers. In effect, it transforms a landscape of low density small groups into a small
world network in which any group has access to the knowledge, or genes, of many other
groups with only very small degrees of separation. This has profound effects on rates of
biocultural transmission and change, as has been shown in recent modeling experiments



(Barton & Riel-Salvatore 2012; Barton et  al.  2011).  One expectation would be that  as
sedentism increases, with decreased reliance on hunting and gathering of geographically
shifting resources, declining mobility effects should increase founder effects and decrease
innovation rates. This trend would reverse again as regional populations become denser
and more socially integrated in complex, urban societies. 

Finally, small-scale societies tend to have organizationally simple decision frameworks,
emphasizing bottom-up, consensus-based decision-making. Small scale societies tend to
operate within the limits of Dunbar's number (Dunbar 1992, Zhou et al. 2005), where most
decision-makers know each other on a personal level, and where decision-making bodies
of  5-10  individuals  optimal  for  consensus  (Johnson  1982)  can  be  assembled  without
recourse to multi-level social hierarchies. This has made such societies attractive for the
application of optimization and game theoretical approaches of human behavioral ecology,
and  equally  amenable  to  rule-based  agents  of  computational  models.  As  with  the
characteristics  reviewed  above,  this  makes  modeling  decision-making  in  small-scale
societies particularly valuable for understanding human social evolutionary history, but of
more  limited  applicability  to  aspects  of  complex  societies  where  hierarchical  decision-
making and social control dominate. 

Here,  we  exemplify  fundamental  cultural  processes  of  information  transmission  and
decision making in the context of small-scale societies, using computational (agent-based)
models.  We  use  abstract,  rather  than  realistic,  models  but  do  so  under  conditions
described  above  that  characterize  small-scale  societies:  variable,  but  generally  low,
population densities of mobile agents that engage in bottom-up decision making and lack
hierarchical organization. 

3 DECISION-MAKING PROCESSES

The study of decision-making processes has grown especially in the second half of the
20th  century  under  the  umbrella  of  behavioral  sciences.  The  influential  work  of  von
Neumann and Morgenstern on game theory (1944) served as a foundational formal model
on how individuals choose their  actions,  based on their  knowledge,  options and other
people  involved  in  given  social  situations.  Several  contributions  from  diverse  fields
(psychology, economics,  biology, anthropology)  have extended and critiqued this  initial
model, which is based on the potential utility that a given strategy has for each individual.

All  these  approaches  combine  theoretical  models  of  decision-making  with  empirical
evidence  collected  from  a  range  of  experiments  and  observations.  In  this  context,
simulation has been a key research methodology since Schelling's  (1971)  segregation
model, which is probably the first conceptual ABM, even though it was not executed in a
computer. Considering the difficulties of  conducting social  decision-making experiments
with real  individuals,  ABMs have been used as virtual  laboratories to explore and test
hypotheses  or  explore  questions  under  variable  scenarios,  including  dynamics  of
competition  and  cooperation  (Axelrod  1997a),  collective  action  (Goldstone  &  Janssen
2005), avoidance of social dilemmas (Gotts et al., 2003), the use of Artificial Intelligence to
model  complex  decision  making (Francès et  al.  2014)  and  the  relevance  of  cognitive
factors (Conte & Castelfranchi 1995).

A majority of ABMs designed to explore decision-making processes in fact exhibit many
characteristics of small-scale societies. Specifically, they combine low densities of non-
specialized agents with a lack of formal institutions and foraging subsistence strategies.
This is precisely the type of society defined in the Sugarscape model (Epstein & Axtell
1996), which has been repeatedly used as a basis for further work on decision-making
studies. 



The  first  model  presented  in  this  paper  illustrates  how  ABM can  be  used  to  explore
decision-making in the context of a heterogeneous environment (ODD document for the
model available as  Appendix 1). This has been one of the most popular applications of
ABM (Axtell et al. 2002, Nonaka & Holmes 2007, Gustafson & Gardner 1996, An 2012). In
particular, we will examine how variations in agents' mobility can lead to the emergence of
the tragedy of the commons (Hardin 1968).

3.1 Model description

Consider  a  bounded  discrete  spatial  grid  with  dimensions  xDim ×  yDim.  This  zone
represents a heterogeneous resource landscape where the cell in each set of coordinates
(x  and  y)  is  defined  by  the  current  level  of  resources  it  contains  (resources)  and  a
maximum level (maxResources). This level will increase every time step following a fixed
value  (resourceGrowthRate)  up  to  the  local  maxResources,  and  will  be  decreased  if
agents consume them. The environment is initialized with random maxResources values
for each cell in the interval (0,maxEnergy) and current resources equal to maxResources
(see Figure 1 for an example and Table 1 for the definition of the parameters).

Figure 1 Example of environment for the decision making model with dimensions xDim/yDim = 6
and resources between 1 and 10.

This environment is populated by agents, each defined by a spatial location (x and y), and
its current level of energy (energy). Every time step this level will decrease by a fixed cost
(energyCost) and will increase by the amount of resources that the agent can collect from
the environment.

This model is initially populated by  nAgents located at random spatial coordinates.  The
simulation then proceeds with a discrete number of time-steps, each where the following
process updates the population of agents and the resources in the environment:
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1. Decision making - All agents move to a new location based on a greedy decision
making process:  each agent  will  move to  the cell  with  highest  resources  within
radius of its current location (x,y). Chebyshev distance is used to define the list of
candidates (i.e., the greatest distance of the two dimensions,  x and  y).  Figure 2
shows an example of the process.

Figure 2 Decision making for two greedy agents. At time step 0 Blue agent is located at (2,1), and
Orange agent at (1,5). If a) radius=1 (left) Blue will move to (3,1) for 8 resources, while Red will
either move to (1,4) or (2,5), both with 9 resources. If b) radius=2 (right) then the Blue will move to
(4,3) or (2,3), while Orange will move to (2,3).

2. Collection - All agents collect resources up to maxEnergy and the collected amount
is  removed from cell's  resources.  The order  that  the agents  follow to  collect  is
shuffled every time step.

3. Cloning -  Agents whose  energy equals  maxEnergy produce offspring. The new
agents have the same spatial location than their parents, and the  energy of both
(parent and offspring) is updated to maxEnergy/2.

4. Energy  expenditure –  Agents  decrease  their  energy  level  by  energyCost.  If
updated  energy  value is 0 or negative the agent dies and is removed from the
simulation.

5. Resource  growth –  All  cells  increase  its  current  resource value  by
resourceGrowthRate up to maxEnergy.

3.2 Equilibrium, equifinality, and multifinality

One of the most common approaches to the use of ABM as a virtual laboratory is the
identification of equilibrium: scenarios where, after a given set of time, the state of the
system does not change over time. This state can be defined in multiple ways, usually
through the definition of summary statistics relevant to the modeler. In our case, we are
interested on population dynamics so that the most reasonable summary statistic is the
number of agents alive in a given time step.  Figure 3 shows an example of equilibrium:
after an initialization time of 100 steps, the number of agents remains stable once the
system has reached an upper threshold (i.e.,  carrying capacity). This value will  remain
stable even if we could be able to run the model for an infinite number of time steps.
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Figure 3 Time series of population size for a single run of the model. After a initialization phase of
100 steps the system remains at equilibrium around a population of 340. Even though the value
oscillates due to stochasticity the mean and standard deviation remains constant through from
step 250 onwards.

A related property of the system is equifinality: multiple scenarios can generate the same
outcome.  The  consequences  of  equifinality  for  formal  modeling  has  been  thoroughly
discussed in literature (Premo 2010, Crema et al 2014b). Even if the result of a computer
model perfectly matches empirical evidence, one can never be sure that we identified the
cause because alternate causes could potentially generate identical outcomes. 

In  addition,  ABM often contains stochastic  dynamics.  In  this  case,  the analysis  of  the
system needs to take into account the emergence of multifinality. This is the opposite of
equifinality, as it means that the same initial conditions can generate different trajectories
and will never be identical even if they follow similar trajectories. Figure 4 shows a simple
example of both properties for the presented model.  Multiple initial  values for  nAgents
generate the same final outcome (i.e. population size), while identical initial conditions can
develop into different trajectories.

Figure 4 Time series of population size portraying the effects of equifinality (left) and multifinality
(right). In the first scenario 10 runs are initialized with different values for nAgents. After 150 time
steps all of them remain at equilibria around the same population size of 220 and there is no way
to know which nAgent value generated each final population size. In the second scenario 3 runs



are initialized with the same value for  the nAgent  parameter  (50).  The same initial  conditions
generate completely different trajectories after 50 time steps.

3.3 Exploring the relationship between mobility and population size

We will use this basic model to explore how decision-making can generate the tragedy of
the commons. In particular, does mobility (i.e.,  radius) influence the carrying capacity of
the system?

We explored  this  relationship  with  the  following experiment.  For  each  value  of  radius
between 1 and 30 we executed 1000 runs while fixing the rest of parameters (see Table
1). Each run was executed for 5000 time steps and we chose as the summary statistic the
population size at the final time step.

Parameter Name Description Parameter Value

nAgents Initial number of Agents 10

xDim Coordinate range x 30

yDim Coordinate range y 30

energyCost Energy spent by an agent every time step 25

resourceGrowthRate Resources increased in each cell every time step 25

maxEnergy Maximum energy/resources any agent/cell can 
accumulate

100

Table 1 Parameter configuration for the decision making model.

Figure 5  shows the  results  of  the  experiment.  A clear  negative  dependence between
mobility and carrying capacity is detected despite the stochasticity of the model.



Figure 5 Impact of radius (X axis) on population size (Y axis) after 5000 time steps. Each blue dot
represents a run, while red dots illustrate the mean value for all the runs initialized with the same
radius (from 1 to 30).

The shape of this result suggests an exponential decay between the parameter radius and
the  final  population  size.  The process is  an  example  of  the  tragedy of  the  commons
because the decision-making process of the agents do not take into account what other
agents are doing. There is no cooperation, as the greedy algorithm looks for maximum
individual benefit (i.e., the cell with highest  resources). An increase in  radius means that
the agents are better informed at identifying the best locations on the grid. In the absence
of cooperation mechanisms, imperfect information (i.e., low radius values) is the only way
to escape the tragedy of the commons.

4 CULTURAL TRANSMISSION

Theoretical  and  empirical  studies  of  cultural  transmission  have  been  associated  with
formal models for over three decades. Early seminal works (Cavalli-Sforza and Feldman
1981, Boyd and Richerson 1985) developed a foundation based on population biology, a
theoretical framework that facilitated the development of an extensive corpus of equation-
based models depicting different modes of cultural transmission. 

More recently, the decreased cost and increased power of computer simulations is offering
new options, enabling solutions to previously intractable equation-based models, and the
potential  to  use  alternative  modeling  framework  such  ABM  simulations  (Mesoudi  and
O'Brien 2008, Mesoudi and Lycet 2009, Powell et al 2009). These advances are easing
the  development  of  models  tailored  to  specific  anthropological  and  archaeological



questions as well as the integration of aspects that are hardly tractable standard equation-
based  models.  Stochastic  elements  other  than  cultural  drift  (i.e.,  the  change  in  the
frequency of cultural variants due to random sampling), such as payoff associated with
different  cultural  variants  (Lake  and  Crema  2012),  or  realistic  fluctuations  in  the
background selective environment (Whitehead and Richerson 2009), can now be easily
incorporated. Similarly, early models have been expanded to explore the role played by
space (Premo and Scholnick 2011, Bentley et al 2014).

These advances are  not  limited  to  theory-building,  but  are  increasingly  illustrating  the
possibility of improving our understanding of how to link empirically observed patterns to
plausible  generative  processes.  These  include  both  simulations  designed  to  test  the
analytical power of existing statistical analysis for cultural evolution (e.g., Eerkens et al
2005, Crema et al 2014a, Premo 2014), as well as attempts to test evolutionary hypothesis
for specific historical contexts (e.g., Kandler and Shennan 2013, Acerbi and Bentley 2014,
Crema et al 2014b, Barton et al 2011). 

However, the most successful line of inquiry remains the theoretical exploration of different
social-learning strategies. These can be broadly distinguished depending on whether the
transmission is intra-generational (horizontal transmission) or inter-generational (vertical
and oblique transmission). Additionally, the choice of a given variant can be dependent on
its  intrinsic  quality  (content-biased  transmission),  the  properties  of  its  bearer  (model-
biased transmission), or other contextual evidence such as preferences for more common
or rarer traits (conformist bias and anti-conformist bias). Alternatively, the transmission can
be  unbiased,  so that  the probability  of  selecting a given variant  is simply given by its
relative frequency. Readers interested in this rich literature can refer to the review papers
by Henrich and McElreath (2003), Laland (2004) and Mesoudi (2015) as well as book-
length treatments of the subject by Richerson and Boyd (2005) and Mesoudi (2011). 

Here,  we  illustrate  how  these  theoretical  models  of  social  learning  strategies  can  be
expressed as an ABM, by exploring how different modes of transmission combined with
different  population  sizes  can  affect  cultural  diversity  (ODD  document  for  the  model
available as Appendix 2).

4.1 Model Description

Consider a population of  nAgents agents located in a bounded rectangular space that is
xDim × yDim. Each agent is described by its spatial location (x and y) and cultural traits in
an array composed by nTraits “slots” that can be one of the values defined by the vector
traitRange. For example if  nTraits=3 and traitRange={0,1,2,3,4}, an agent can have traits
{0,2,0} while another one might have {0,1,1}. This array of numbers represent the cultural
traits possessed by each agent following classical Axelrod's model (1997b). Thus in the
example just given, the two agent share the same cultural trait (the number 0) in the first
slot. 

When the simulation is initialized, all agents possess random permutations of these traits,
as well  as a random spatial  coordinate.  The simulation then proceeds with  a discrete
number of time-steps, each where the following two processes update the location and the
cultural traits of the agents:

1. Movement.  All  agents  move  to  a  random  location  within  a  euclidean  distance
moveDistance.

2. Cultural Transmission. All agents engage into one of the following modes of social
learning:



a) Vertical  Transmission.  With  probability  replacementRate a  random  subset  of  n
agents are selected and removed. Then n agents (i.e., the same number of agents
being removed) are introduced in the model, each possessing the cultural traits and
the spatial coordinates of a randomly selected agent from the previous time-step.
However, with probability  innovationRate  some of these newly added agents will
have a new value on one of its cultural traits slots.

b) Unbiased  Transmission.  Each  focal  agent  first  defines  its  social  teacher  as  a
randomly  chosen  agents  located  within  distance  interactionRadius.  If  a  social
teacher is found, the focal agent choses a random index value from its cultural trait
slots, and copies the corresponding value of the social teacher. Thus, for example,
if the focal agents have {3,2,0}, the social teacher {0,1,1}, and the random index
value is  2,  the  updated cultural  traits  of  the  focal  agent  becomes {3,1,0}.  With
probability innovationRate the newly acquired is swapped with a random value from
traitRange.

c) Prestige-Biased Transmission.  As in  the  unbiased transmission model,  the focal
agents selects a social  teacher  within distance  interactionRadius.  This time,  the
probability of being selected as social teacher is however proportional to the trait
value  at  the  index  number  prestigeIndex.  More  specifically  the  probability  of
selecting a social teacher x is given by (prestige trait value of agent x + 1). Thus if
three agents located within distance interactionRadius, have respectively 3, 2, and
0  as  trait  value  at  their  prestigeIndex,  the  probability  for  the  first  agent  to  be
selected is (3+1) / (3+1 + 2+1 + 0+1)= 0.5. As for the unbiased model, the actual
cultural  trait  slot  being  copied  is  randomly  selected,  hence  portraying  social
contexts where the learners selects a teacher based on its prestige, but it is not
always  aware  of  which  cultural  trait  determines  such  prestige. As  in  the  other
models,  with  probability  innovationRate  the  newly  acquired  is  swapped  with  a
random value from traitRange.

d) Conformist Transmission. The focal agent defines the pool of social teachers (i.e. all
agents located within distance  interactionRadius) and a randomly selected index
value for its cultural trait slots. Then it copies the most common value amongst the
social teachers (randomly selecting between the most common ones in case of a
tie). With probability innovationRate the newly acquired is swapped with a random
value from traitRange.

The four transmission modes are exemplified in Figure 6.

Figure 6  The 4 implemented models of cultural transmission. Vertical:  offspring copies the trait



from parent, Unbiased: Unbiased: random copy of one trait from one neighbor; Prestige-biased: a
random trait is copied from the neighbor with higher value of the third trait; Conformist biased: the
most common trait between neighbor is copied.

4.2 Exploring the effects of population size and learning strategy on cultural 
diversity

One simple question we can explore with  this  model  is how different modes of social
learning are affected by population density. To do this, we explore a range of parameter
values for  nAgents,  (the  number  of  agents  in  the  simulation),  and record  a summary
statistic that explores some properties of the cultural traits possessed by the agents. One
approach  is  to  count  the  absolute  frequencies  of  unique  combinations  of  traits,  and
compute the Simpson's diversity index (Simpson 1949). This will be bounded between 0
(all agents possess the exact same combination of traits) and 1 (all agents are unique, i.e.
no  two  agents  have  the  same  combination  of  traits).  The  simulation  will  help  us
constructing expectations for a variety of questions. With everything being equal do we
expect  to  observe  different  levels  of  cultural  diversity  for  different  modes  of  cultural
transmission? Does variation in population size affects the levels of cultural diversity? If so,
do different learning strategies exhibit different relationship between population size and
cultural diversity? 

We  explored  the  relationship  between  population  size,  learning  strategy,  and  cultural
diversity  with  the  following  experiments.  For  each  of  the  four  modes  of  cultural
transmission  we  executed  1,000  simulations  fixing  all  parameters  (see  Table  2),  but
randomly  drawing  a  different  value  of  nAgents from  a  uniform  probability  distribution
bounded between 5 and 500.

Parameter Name Description Parameter Value

nAgents Number of Agents Random value between 5 and 500

xDim Coordinate range x 10

yDim Coordinate range y 10

replacementRate Agent replacement rate (only used
for Vertical Transmission)

0.1 

moveDistance Distance moved by each agent 
each time-step

1

interactionRadius Sampling radius for cultural 
transmission (not used for  
Vertical Transmission)

1

innovationRate Rate of innovation 0.01

nTraits Number of slots containing 
cultural traits 

3

nTraitRange Range of possible cultural trait 
values

0,1,2,3,4

prestigeIndex Index value for the prestige trait 1
Table 2 Parameter configuration for the cultural transmission model.



We ran each simulation for 1,000 time-steps, and recorded the Simpson's index in the final
time-step. Figure 7 shows the results of this experiment. 

Figure 7 Effect of transmission mode on Simpson's diversity index for different group size.

The first  thing  we notice  in  all  the  plots  is  how the  variance in  the  diversity  index is
reduced,  although  with  a  different  magnitude,  as  a  function  of  nAgents.  This  is  not
surprising, as with low population density  the effects of  sampling error have a greater
impact  in  the  change  of  relative  frequencies  (i.e.,  drift  is  a  strong  component  in  the
system), so that diversity value is hardly stable and exhibit strong fluctuations. With higher
population size the effect of drift is reduced. All models, except for conformist learning,
exhibit an increase in diversity index as a function of nAgents, albeit the absolute values
as well as the variance in the output is different between the three. For example, Prestige-
Biased Transmission seem to show larger variance and slightly lower diversity statistics.
This is possibly determined by the fact that learning bias in this case reduces diversity, as
agents with low prestige will copy high prestige individual, whilst high prestige individual
will  copy  each  other.  This  reduces the  potential  number  of  cultural  traits  that  can be
copied,  funneling  the  system  to  a  lower  diversity  compared  to  unbiased  random
encounters.  In  the  conformist  transmission, this  process becomes extreme,  as  agents
learn simultaneously from multiple social teachers without any stochastic effect. 

5 CONCLUDING REMARKS

This paper explores two models of social processes that are commonly found in small-
scale societies, where decisions undertaken for resources and cultural transmission can



have  a  major  effect  on  societal/ecological  dynamics  and  their  evolution.  By  providing
research-relevant models in this presentation, our intention is to provide useful models that
can  provide  key  lessons  in  exploring  such  societies  as  well  as  giving  readers  an
opportunity  to  implement  these  models  in  common,  open  and  free  computational
languages and modeling platforms. Common themes in ABM are demonstrated, showing
how  situations  of  population  equilibrium  could  derive  in  cases  where  resources  are
consumed and generated at  fixed rates.  We see that  knowledge by agents  can have
detrimental influence on agents, particularly in situations where there is no cooperation
and agents have more knowledge of  their  environment.  The paper  explores issues of
population density, where this, at times, has dramatic impact on how given societies could
evolve  and  affect  cultural  transmission  to  future  generations.  Different  methods  of
transmitting cultural understanding could lead to very different situations that lead to more
or less diverse cultural traits. 

Looking beyond the demonstrations provided in this paper, we see that ABM will continue
to expand in its use to understand how complex, small-scale societies evolve over time.
We  already  see  that  more  powerful  computational  resources  are  being  increasingly
applied to study large-scale parameter spaces that represent varied and diverse sets of
behaviors  for  these  and  other  types  of  societies  (Dubitzky  et  al.  2012).  Finding
commonalities  between  ancient  and  more  modern  small-scale  societies  is  another
important research theme where ABM can further assist, as theoretical underpinnings can
be tested irrespective of time and place. At a general level, increasingly research focuses
on how small-scale societies can affect ecosystems and if such impacts can lead to more
or less sustainable social-ecological systems (Smith and M. Wishnie 2000). The methods
and  examples  advanced  here  are  intended  to  assist  in  such  research  endeavors  by
providing practical, research-focused models developed from a bottom-up perspective and
in open and free formats.
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